Wednesday 16 August 2017

Berechnung Ein Einfach Gleitender Durchschnitt

Kaufman039s Adaptiver Moving Average (KAMA) Kaufman039s Adaptiver Moving Average (KAMA) Einleitung Entwickelt von Perry Kaufman, Kaufman039s Der adaptive Moving Average (KAMA) ist ein gleitender Durchschnitt, der für Marktlärm oder Volatilität verantwortlich ist. KAMA wird die Preise genau verfolgen, wenn die Preisschwankungen relativ klein sind und der Lärm gering ist. KAMA wird sich anpassen, wenn die Preisschwankungen sich verbreitern und die Preise aus größerer Entfernung folgen. Mit diesem Trendfolger können Sie den Gesamttrend, Zeitumkehrpunkte und Filterpreisbewegungen identifizieren. Berechnung Es sind mehrere Schritte erforderlich, um Kaufman039s Adaptive Moving Average zu berechnen. Let039s ersten Start mit den Einstellungen von Perry Kaufman empfohlen, die KAMA (10,2,30) sind. 10 ist die Anzahl der Perioden für das Efficiency Ratio (ER). 2 ist die Anzahl der Perioden für die schnellste EMA-Konstante. 30 ist die Anzahl der Perioden für die langsamste EMA-Konstante. Vor der Berechnung von KAMA müssen wir das Efficiency Ratio (ER) und die Smoothing Constant (SC) berechnen. Das Brechen der Formel in Bissgrßen-Nuggets macht es leichter, die Methodik hinter dem Indikator zu verstehen. Beachten Sie, dass ABS für Absolutwert steht. Efficiency Ratio (ER) Die ER ist grundsätzlich die an die tägliche Volatilität angepasste Preisänderung. In statistischer Hinsicht zeigt das Efficiency Ratio die fraktale Effizienz von Preisänderungen an. ER schwankt zwischen 1 und 0, aber diese Extreme sind die Ausnahme, nicht die Norm. ER wäre 1, wenn die Preise verschoben 10 aufeinander folgenden Perioden oder nach 10 aufeinander folgenden Perioden. ER wäre null, wenn der Kurs über die 10 Perioden unverändert bleibt. Glättungskonstante (SC) Die Glättungskonstante verwendet den ER und zwei Glättungskonstanten, die auf einem exponentiellen gleitenden Durchschnitt basieren. Wie Sie vielleicht bemerkt haben, verwendet die Glättungskonstante die Glättungskonstanten für einen exponentiellen gleitenden Durchschnitt in ihrer Formel. (2301) die Glättungskonstante für eine EMA mit 30 Perioden ist. Der schnellste SC ist die Glättungskonstante für kürzere EMA (2-Perioden). Der langsamste SC ist die Glättungskonstante für die langsamste EMA (30 Perioden). Beachten Sie, dass die 2 am Ende die Gleichung quadrieren soll. Mit dem Efficiency Ratio (ER) und Smoothing Constant (SC) können wir nun den Kaufman039s Adaptive Moving Average (KAMA) berechnen. Da wir einen Anfangswert benötigen, um die Berechnung zu starten, ist die erste KAMA nur ein einfacher gleitender Durchschnitt. Die folgenden Berechnungen basieren auf der nachstehenden Formel. BerechnungsbeispielChart Die folgenden Bilder zeigen einen Screenshot aus einer Excel-Kalkulationstabelle, die zur Berechnung von KAMA und dem entsprechenden QQQ-Diagramm verwendet wird. Verwendung und Signale Chartisten können KAMA wie alle anderen Trend folgenden Indikator, wie einen gleitenden Durchschnitt verwenden. Chartisten können nach Preiskreuzen, Richtungsänderungen und gefilterten Signalen suchen. Zuerst zeigt ein Kreuz über oder unter KAMA Richtungsänderungen der Preise an. Wie bei jedem gleitenden Durchschnitt, wird ein einfaches Crossover-System erzeugen viele Signale und viele whipsaws. Chartisten können Whipsaws reduzieren, indem sie einen Preis - oder Zeitfilter auf die Crossover anwenden. Man könnte Preis verlangen, um das Kreuz für eine festgelegte Anzahl von Tagen zu halten, oder erfordern das Kreuz, das die KAMA um einen festgelegten Prozentsatz übersteigt. Zweitens können Chartisten die Richtung von KAMA verwenden, um den Gesamttrend für eine Sicherheit zu definieren. Dies kann eine Parameteranpassung erfordern, um die Anzeige weiter zu glätten. Chartisten können den mittleren Parameter ändern, der die schnellste EMA-Konstante ist, um KAMA zu glätten und nach Richtungsänderungen zu suchen. Der Trend ist nach unten, solange KAMA fällt und schmieden unteren Tiefs. Die Tendenz steigt, solange KAMA steigt und höhere Höhen schmiedet. Das Kroger-Beispiel unten zeigt KAMA (10,5,30) mit einem steilen Aufwärtstrend von Dezember bis März und einem weniger steilen Aufwärtstrend von Mai bis August. Und schließlich können Chartisten Signale und Techniken kombinieren. Chartisten können eine längerfristige KAMA verwenden, um den größeren Trend und eine kurzfristige KAMA für Handelssignale zu definieren. Beispielsweise könnte KAMA (10, 5, 30) als Trendfilter verwendet werden und im Anstieg als bullisch angesehen werden. Sobald bullish, könnte Chartisten dann bullish Kreuze suchen, wenn der Preis bewegt sich über KAMA (10,2,30). Das folgende Beispiel zeigt MMM mit einem steigenden langfristigen KAMA und bullischen Kreuzen im Dezember, Januar und Februar. Langfristige KAMA sank im April und es gab bearish Kreuze im Mai, Juni und Juli. SharpCharts KAMA kann als Indikator-Overlay in der SharpCharts-Workbench gefunden werden. Die Standardeinstellungen werden automatisch in der Parameterbox angezeigt, sobald sie ausgewählt sind, und die Chartisten können diese Parameter entsprechend ihren analytischen Bedürfnissen ändern. Der erste Parameter ist für das Effizienzverhältnis und die Chartisten sollten davon absehen, diese Zahl zu erhöhen. Stattdessen können Chartisten es verringern, um die Empfindlichkeit zu erhöhen. Chartisten, die KAMA für eine längerfristige Trendanalyse glätten möchten, können den mittleren Parameter schrittweise erhöhen. Obwohl der Unterschied nur 3 ist, ist KAMA (10,5,30) deutlich glatter als KAMA (10,2,30). Weitere Studie Der Autor bietet detaillierte Informationen zu Indikatoren, Programmen, Algorithmen und Systemen, einschließlich Einzelheiten über KAMA und andere gleitende Durchschnittssysteme. Trading-Systeme und Methoden Perry KaufmanMoving-Mittelwerte: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Durchschnittswerte verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (gemeinhin in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Sobald es bestimmt ist, wird der daraus resultierende Mittelwert dann auf eine Tabelle aufgetragen, um es den Händlern zu ermöglichen, auf geglättete Daten zu schauen, anstatt sich auf die täglichen Preisschwankungen zu konzentrieren, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, der als einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel eines gegebenen Satzes von Werten genommen wird. Um beispielsweise einen gleitenden 10-Tage-Durchschnitt zu berechnen, würden Sie die Schlusskurse der letzten 10 Tage addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu geben, wie ein Vermögenswert im Verhältnis zu den vergangenen 10 Tagen bewertet wird. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Satz fallen gelassen werden müssen und neue Datenpunkte hereinkommen müssen, um sie zu ersetzen. Somit bewegt sich der Datensatz ständig, um neue Daten, wie er verfügbar wird, zu berücksichtigen. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Messwerte siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick darauf werfen, wie sich diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie bei der Schaffung der durchschnittlichen wollen. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Mittelwerte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: Wie Sie sie verwenden


No comments:

Post a Comment